Roland Kontermann contributed to publications in Mabs and in Scientific Reports

September 17, 2018

Design, selection and optimization of an anti-TRAIL-R2/anti-CD3 bispecific antibody able to educate T cells to recognize and destroy cancer cells.

Satta A, Mezzanzanica D, Caroli F, Frigerio B, Di Nicola M, Kontermann RE, Iacovelli F, Desideri A, Anichini A, Canevari S, Gianni AM, Figini M.

Abstract

Recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or TRAIL-receptor agonistic monoclonal antibodies promote apoptosis in most cancer cells, and the differential expression of TRAIL-R2 between tumor and normal tissues allows its exploitation as a tumor-associated antigen. The use of these antibodies as anticancer agents has been extensively studied, but the results of clinical trials were disappointing. The observed lack of anticancer activity could be attributed to intrinsic or acquired resistance of tumor cells to this type of treatment. A possible strategy to circumvent drug resistance would be to strike tumor cells with a second modality based on a different mechanism of action. We therefore set out to generate and optimize a bispecific antibody targeting TRAIL-R2 and CD3. After the construction of different bispecific antibodies in tandem-scFv or single-chain diabody formats to reduce possible immunogenicity, we selected a humanized bispecific antibody with very low aggregates and long-term high stability and functionality. This antibody triggered TRAIL-R2 in an agonistic manner and its anticancer activity proved dramatically potentiated by the redirection of cytotoxic T cells against both sensitive and resistant melanoma cells. The results of our study show that combining the TRAIL-based antitumor strategy with an immunotherapeutic approach in a single molecule could be an effective addition to the anticancer armamentarium.

 

Anti-TNFR1 targeting in humanized mice ameliorates disease in a model of multiple sclerosis.

Williams SK, Fairless R, Maier O, Liermann PC, Pichi K, Fischer R, Eisel ULM, Kontermann R, Herrmann A, Weksler B, Romero N, Couraud PO, Pfizenmaier K, Diem R.

Abstract

Tumour necrosis factor (TNF) signalling is mediated via two receptors, TNF-receptor 1 (TNFR1) and TNF-receptor 2 (TNFR2), which work antithetically to balance CNS immune responses involved in autoimmune diseases such as multiple sclerosis. To determine the therapeutic potential of selectively inhibiting TNFR1 in mice with experimental autoimmune encephalomyelitis, we used chimeric human/mouse TNFR1 knock-in mice allowing the evaluation of antagonistic anti-human TNFR1 antibody efficacy. Treatment of mice after onset of disease with ATROSAB resulted in a robust amelioration of disease severity, correlating with reduced central nervous system immune cell infiltration. Long-term efficacy of treatment was achieved by treatment with the parental mouse anti-human TNFR1 antibody, H398, and extended by subsequent re-treatment of mice following relapse. Our data support the hypothesis that anti-TNFR1 therapy restricts immune cell infiltration across the blood-brain barrier through the down-regulation of TNF-induced adhesion molecules, rather than altering immune cell composition or activity. Collectively, we demonstrate the potential for anti-human TNFR1 therapies to effectively modulate immune responses in autoimmune disease.

Design, selection and optimization of an anti-TRAIL-R2/anti-CD3 bispecific antibody able to educate T cells to recognize and destroy cancer cells.

To the top of the page