Rocío Mora-Molina et al. published in Cell Death and Disease

February 7, 2022

cFLIP downregulation is an early event required for endoplasmic reticulum stress-induced apoptosis in tumor cells

Rocío Mora-Molina, Daniela Stöhr, Markus Rehm & Abelardo López-Rivas


Protein misfolding or unfolding and the resulting endoplasmic reticulum (ER) stress frequently occur in highly proliferative tumors. How tumor cells escape cell death by apoptosis after chronic ER stress remains poorly understood. We have investigated in both two-dimensional (2D) cultures and multicellular tumor spheroids (MCTSs) the role of caspase-8 inhibitor cFLIP as a regulator of the balance between apoptosis and survival in colon cancer cells undergoing ER stress. We report that downregulation of cFLIP proteins levels is an early event upon treatment of 2D cultures of colon cancer cells with ER stress inducers, preceding TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) upregulation, caspase-8 activation, and apoptosis. Maintaining high cFLIP levels during ER stress by ectopic expression of cFLIP markedly inhibits ER stress-induced caspase-8 activation and apoptosis. Conversely, cFLIP knockdown by RNA interference significantly accelerates caspase-8 activation and apoptosis upon ER stress. Despite activation of the proapoptotic PERK branch of the unfolded protein response (UPR) and upregulation of TRAIL-R2, MCTSs are markedly more resistant to ER stress than 2D cultures of tumor cells. Resistance of MCTSs to ER stress-induced apoptosis correlates with sustained cFLIPL expression. Interestingly, resistance to ER stress-induced apoptosis is abolished in MCTSs generated from cFLIPL knockdown tumor cells. Overall, our results suggest that controlling cFLIP levels in tumors is an adaptive strategy to prevent tumor cell’s demise in the unfavorable conditions of the tumor microenvironment.


doi: 10.1038/s41419-022-04574-6

To the top of the page