Hutt et al. accepted for publication in Oncotarget

March 19, 2018

Targeting scFv-Fc-scTRAIL fusion proteins to tumor cells.

Hutt M, Fellermeier-Kopf S, Seifert O, Schmitt LC, Pfizenmaier K, Kontermann RE.


Fusion proteins combining hexavalent TRAIL with antibody fragments allow for a targeted delivery and efficient apoptosis induction in tumor cells. Here, we analyzed scFv-Fc-scTRAIL molecules directed against EGFR, HER2, HER3, and EpCAM as well as an untargeted Fc-scTRAIL fusion protein for their potentials to induce cell death both in vitro and in a xenograft tumor model in vivo. The scFv-Fc-scTRAIL fusion protein directed against EGFR as well as the fusion protein directed against EpCAM showed targeting effects on the two tested colorectal carcinoma cell lines Colo205 and HCT116, while a fusion protein targeting HER3 was more effective than untargeted Fc-scTRAIL only on Colo205 cells. Interestingly, another anti-HER3 scFv-Fc-scTRAIL fusion protein exhibiting approximately 10-fold weaker antigen binding as well as the HER2-directed molecule were unable to increase cytotoxicity compared to Fc-scTRAIL. A comparison of EC50 values of cell death induction and antigen binding supports the assumption that high affinity antigen binding is one of the requirements for in vitro targeting effects. Furthermore, a minimal number of expressed target antigens might be required for increased cytotoxicity of targeted compared to non-targeted molecules. In a Colo205 s.c. xenograft tumor model, strongest antitumor activity was observed for the anti-HER3 scFv-Fc-scTRAIL fusion protein based on antibody 3-43, with complete tumor remissions after six twice-weekly injections. Surprisingly, a similar in vivo activity was also observed for untargeted Fc-scTRAIL in this tumor model, indicating that additional factors contribute to the potent efficacy of targeted as well as untargeted hexavalent Fc-scTRAIL fusion proteins in vivo.

DOI: 10.18632/oncotarget.24379

To the top of the page